解析学覚え書き⑤

双曲線関数の逆関数
まずはこちらをご覧いただきたい。
双曲線関数.jpg
こんな感じの関数三兄弟を双曲線関数といい、三角関数のようにハイパボリックサイン、ハイパボリックコサイン、ハイパボリックタンジェントと名前がついている(ハイパボリックはハイ・パラボラで双曲線という意味)。
y=sinθとx=cosθの座標が半径1の円周上(x²+y²=1)の点に対応しているように、双曲線関数y=sinhθとx=coshθの座標は双曲線上(x²-y²=1)の点に対応している。また、計算上の性質も三角関数に似ている。
ちなみに、グラフの形自体は(サイン、コサインのグラフがパルス状で円形でないのと同様に)、両端を固定されたロープがたわんだような形で双曲線ではない。
さらに、双曲線関数はこんなふうに定義がいきなり出てくるんだけど、なんでこういう式になったかの証明は難関大学レベルらしいのでスルーの方向でお願いします。※オイラーの公式で出せるらしい。

ハイパボリックサインの逆関数
ハイパボリックサインの逆関.jpg

sinhxの逆関数.jpg

ハイパボリックコサインの逆関数
ハイパボリックコサインの逆.jpg

coshxの逆関数.jpg

ハイパボリックタンジェントの逆関数
tanhxの逆関数①.jpg

tanhxの逆関数②.jpg

tanhxの逆関数③.jpg

tanhxの逆関数④.jpg
Calendar
<< May 2020 >>
SunMonTueWedThuFriSat
     12
3456789
10111213141516
17181920212223
24252627282930
31
search this site.
tags
archives
recent comment
recent trackback
others
にほんブログ村 科学ブログへ にほんブログ村 科学ブログ 恐竜へ カウンター
admin
  • 管理者ページ
  • 記事を書く
  • ログアウト