第二種電気工事士覚え書き①

 ついに始まったシリーズ。3月に試験申込、6月に学科試験らしい。目指せ60点!(志が低い)

参考文献:電検・電工資格試験研究会編著『DVDで一発合格!第二種電気工事士 筆記&技能テキスト カラー版』

電気の基礎理論
基本的に中学校の理科レベル。
交流を掘り下げるあたりからたぶん工業高校レベル。

電気抵抗

抵抗R=ρ(電気抵抗率)×ℓ(長さ)÷A(断面積)

断面積に反比例。
長さと温度に比例。

並列回路の合成抵抗
各抵抗器の抵抗の逆数を足して、その数で1を割る。

開放回路
回路が閉じていないこと。電気は流れない。

電圧降下
電流が流れるときに抵抗によって失う電圧のこと。
電流が流れない場所ではおこらない。

電力
電気製品などで消費される電力はPで表す。単位はW。
P=V×I

電力量
Q=P×t(秒)
1J=1Ws

交流の値の表し方
瞬時値:変化する交流の瞬間、瞬間の値。
最大値:瞬時値が最も大きくなるときの値。
実効値:直流回路で発生する電力と同じ電力を発生させる交流回路の電流・電圧。

交流の実効値=最大値/√2

周期T=1/周波数f

コイル(インダクタ)
コイルは直流では普通の導線と変わらない(ちょっと抵抗が高い程度)が、交流ではその流れを妨げる働き(インダクタンス)がある。
インダクタンスの単位はH(ヘンリー)である。

交流電流I=V/(2π×周波数f×インダクタンスL)

誘導性リアクタンス
先ほどの式の右辺の分母にある2πfLを電気抵抗として捉えたもの(これでオームの法則の式になるから)。
この値は交流に対する負荷を表し、Xと記される。

コンデンサ
2枚の電極版を向かい合わせたもの。Cで表され、回路図記号では電源装置に似たマークで記される(縦線の長さが等しい)。
コンデンサに直流電源をつなぐと、一瞬電流が流れてすぐに流れなくなる。これは電極版に電化が蓄えられ充電をしている状態である。また、充電されたコンデンサの回路の電源を外して、電線をつなげると(短絡)、さっきとは逆方向に一瞬電流が放電される。
ちなみに、交流電源では、コンデンサは充放電をくり返す(回路に電流を流し続ける)ため、電気を貯めることはできない。

キャパシタ
コンデンサには交流の流れを助長する働きがある(静電容量またはキャパシタンス。単位はFファラド)。

電流I=2π×周波数f×キャパシタンスC×電圧V

容量性リアクタンス
先ほどの式もオームの法則にあてはめると、2πfCの逆数が電気抵抗(交流に対する負荷)となる。

Xc=1/(2πfC)

交流回路と位相
交流のグラフは波形となるが、交流電流の波形と交流電圧の波形が一致するとき、位相があっている(同相)と言う。
しかし、コイルやコンデンサを回路に組み込むと位相(タイミング)はずれてしまう。
位相がずれるとオームの法則が成り立たない。

コイルの位相
コイルには電流の変化を妨げる性質があるため、電流の波形は、電圧の波形より90°(1/4周期)位相が遅れる。

コンデンサの位相
コンデンサには電流の変化を促す性質があるため、電流の波形は、電圧の波形より90°(1/4周期)位相が進む。

インピーダンス
交流負荷(電気抵抗、誘導性リアクタンス、容量性リアクタンス)の総称。
複数の抵抗器の抵抗を足すことができるように、インピーダンスも足すことができる(合成インピーダンス)。
合成インピーダンスはベクトルで求めることができる。

RLC直列回路
R抵抗、Lコイル、Cコンデンサをそれぞれ直列につないだ回路。

RLC直列抵抗の電圧
直列回路なのでどこでも電流は同じ。
したがって電流を各負荷の電圧の位相の基準にできる。
抵抗器にかかる電圧は電流と同相。(→)
コイルにかかる電圧VLは電流よりも位相が90°進む。(↑)
コンデンサにかかる電圧Vcは電流よりも位相が90°遅れる。(↓)
したがってRLC直列回路全体の電圧は、電流(=抵抗器にかかる電圧)とコイルとコンデンサにかかる電圧(VL-Vc)のベクトルの合成になるため、三平方の定理により・・・

V=√V²+(V-Vc)²

RLC直列回路の合成インピーダンス
オームの法則により、抵抗器、コイル、コンデンサそれぞれにかかる電圧を電流で割れば、抵抗R、誘導性リアクタンスXL、容量性リアクタンスXcの値がそれぞれ出るので、合成インピーダンスZも三平方の定理より・・・

Z=√R²+(X-Xc)²

RLC並列回路
R抵抗、Lコイル、Cコンデンサをそれぞれ並列につないだ回路。

RLC直列抵抗の電流
並列回路なのでどこでも電圧は同じ。したがって電圧を基準に電流を求める。
抵抗器にかかる電流は電圧と同相。(→)
コイルにかかる電流ILは電圧よりも位相が90°遅れる。(↓)
コンデンサにかかる電流Icは電圧よりも位相が90°進む。(↑)

I=√I²+(Ic-I)²

交流の電力
中学校で習う電力は直流だったが、交流回路の負荷において消費される電力P(※有効電力)の一般式は以下のようになる。

P=VIcosθ

力率
上の式のcosθの部分。上の式は有効電力を求める式なので、V×I全体(皮相電力)の何割の力が実際に使われているかを示している。
なぜ、三角比なのかというと、この力率もベクトルで求めているから。
皮相電力VI:三角形の斜辺
無効電力:三角形の高さ
有効電力P:三角形の底辺
よって・・・

力率cosθ=P/VI

この値が1の時(直流回路の場合もしくは負荷が抵抗のみの場合)、P=VIで無効電力は0ということになる。
これが、コイルやコンデンサがつながっているとθ分だけ位相差が発生し、力率は1未満となる。

有効電力
電気機器や電動機など、負荷側(需要側)で取りざたされる値。

皮相電力
実効値のままの電力なので、発電機やトランス、コンセントなど、供給側で取りざたされる値。

単相交流
一般家庭に送られてくる交流の電気。
行きと帰りで2本の電線を用いる。

三相交流
工場やビルなど、大電力を必要とする施設に送られてくる交流の電気。
3本の電線を用いる。電線1本あたりの送電電力が大きいのが特徴。
3つの波形の位相は120°ずつ互いにずれているため、どの瞬間でも3つの交流の振幅の和は0となる。つまり、帰り道の共通帰線が要らない。
ニコラ・テスラが開発に関わっているらしい。

線間電圧
三相交流を送る3本の電線の間の電圧。A-B間、B-C間、A-C間の3つある。

相電圧
1相あたりの負荷にかかる電圧。

線電流
なぜか線間電流とは言わない。
3本の線を流れる電流。A-B間、B-C間、A-C間の3つある。

相電流
1相あたりの負荷に流れる電流。

Y(スター)結線
ベンツのマークように結線したもの。
線電流=相電流
線間電圧=√3×相電圧(※線間電圧のベクトルが相電圧のそれよりも30°ずれるため)

Δ(デルタ)結線
三角形に結線したもの。
線電流=√3×相電流
線間電圧=相電圧

三相交流回路の電力
各相の負荷の消費電力(相電圧×送電流×力率)を合計する。
各相の負荷の消費電力が同じ場合は、×3をすればよい。
線間電圧と線電流から電力を求める場合は

P=√3×線間電圧V×線間電流I×cosθ

ちなみに、スター結線でもデルタ結線でも同じ式が使える(どちらでやっても結局式が一致するから)。

三相交流の電力量
電力に時間をかけるだけ。
Calendar
<< April 2024 >>
SunMonTueWedThuFriSat
 123456
78910111213
14151617181920
21222324252627
282930
search this site.
tags
archives
recent comment
recent trackback
others
にほんブログ村 科学ブログへ にほんブログ村 科学ブログ 恐竜へ カウンター
admin
  • 管理者ページ
  • 記事を書く
  • ログアウト