地学概論覚え書き①

参考文献:『カラー版徹底図解地球のしくみ』

地球の内部構造
直接地面を掘って調べるというわけにはいかないので、スイカが熟れたかどうかを外側から叩いて調べるように、地震波を利用して内部の構造を推定する(地震波トモグラフィー)。
地震の縦波のP波は、過密波のために液体中も固体中も通るが、横波(波の伝わる方向と垂直に波打つタイプの波)のS波は、固体中しか通らない。

このような性質を踏まえて地球の内部を考えると、震源地から比較的近い場所で起こった地震の場合、震央からの距離がちょうど200キロメートルあたりで、走時(地震波が発生してから観測地点に到達するまでの時間のこと)と震央距離とのグラフである走時曲線が折れ曲がる(走時と震源距離の変化の割合が小さくなる=地震波の速度が速くなる)。
これは地下深くにP波が通常よりも速く伝わる層(地震の高速道路のようなもの)があり、そのために地震波の速度が不連続に変化することを示している。

この地震の速度を不連続に変化させる境界のことを旧ユーゴスラビアの発見者アンドリア・モホロビチッチにちなんでモホロビチッチ不連続面という(略してモホ面)。
そしてこのモホ面よりも上を地殻、下をマントル(硬いので地震が速く伝わる層)という。モホ面の深さは海洋地域で約5~10キロメートル、大陸地域で30~50キロメートルと大陸地域の方が深い。

次に、震源地から比較的遠い場所で起こった地震の走時曲線を見ると、震央から103度~143度の地域(距離がでかいのでもはや地球の中心からの角度で表す。だいたい11000~15000キロメートルくらい)にはP波が届かないことから、この地域をシャドーゾーンと呼ぶ。

また、103度よりも遠くにはS波が伝わらないことから、、地下約2900キロメートルの深さの場所にも不連続面があり、その下は液体になっていることもわかる。この境界をアメリカの発見者べノー・グーテンベルグにちなんでグーテンベルグ不連続面といい、この面よりも上をマントル、下を核という。

まとめ
地殻
(厚さ7~40キロメートル)

モホロビチッチ不連続面

上部マントル(深さ670キロメートルまで。岩石の結晶構造が圧力で変化する深さ670キロメートルを境に上部マントル、下部マントルに分けられる)

下部マントル(深さ2900キロメートルまで)

グーテンベルグ不連続面

外核(液体の鉄。深さ5100キロメートルまで)

レーマン不連続面

内核(固体の鉄。5000~6000℃と、とても熱いが、圧力もものすごいので融点が高くなって固体のまま)

プレートテクトニクス理論の確立
1910年代にドイツのウェゲナーは、大西洋を挟むアフリカ大陸と南米大陸の海岸線が似ていることから、かつてこの二つの大陸はくっついていたのではないかと考えて、大陸移動説を唱えた。ウェゲナーは自説を証明するために、メソサウルスという爬虫類の化石や、グロッソプテリス植物群の化石が両大陸に分布し、地質構造の連続性があることを発見した。
また、古生代後期の大陸氷河が、南米南部、アフリカ南部、オーストラリア、インドまで広がっていたことを氷河の削り跡から発見した。
こうして、かつて6つの大陸はひとつの超大陸(パンゲア=ギリシャ語で「すべての大陸」という意味)だったことを結論づけて、1912年に『大陸と海洋の起源』という論文を発表した。
しかしこの学説は当時は受け入れられなかった。その理由は大陸を動かす原動力を説明することができなかったからである。

その後、大陸移動説は歴史の表舞台から消え去ったが、1950年代になると再び取りざたされることになった。
マグマが冷えて岩石ができるとき、岩石ができた当時の地球の磁場の方向が残留磁気として岩石に残る。この残留磁気を調べると、大昔にできた北米大陸とヨーロッパ大陸の火成岩の磁北が一致しないことが分かった。つまり磁北を一致させるためには両大陸を移動させる必要があったのである。
また、冷戦時代にアメリカが行った海底地形調査で、海底の巨大山脈である海嶺の存在も明らかになり、海嶺を中心に左右の海底に残された古地磁気の縞模様を調べると、綺麗に左右対称になった。つまり大西洋の海底は海嶺を中心に二つに分かれて拡大を続けているということを認めざるを得なくなった。

こうしてウェゲナーの大陸移動説は、アメリカのヘスとディーツによって海洋底拡大説として説明され、これらの学説を基にプレートテクトニクス理論が生まれた。
プレートとは地球の表面を覆う十数枚の硬い板状の岩盤のことで、ゆっくりとマントルの上を移動している。
プレートは海嶺で生まれて海溝へ沈み込む。その際にプレート同士が衝突したりすれ違ったりする。このプレートの運動を元に様々な地殻変動(巨大山脈の形成、地震や火山の発生原因など)を説明する理論がプレートテクトニクス理論である。

ウィルソンサイクル
プレートテクトニクス理論の構築にもっとも貢献したカナダのツゾー・ウィルソンは、プレートの運動がライフサイクルを持っており、以下の6つのステージに分けられることを示した。
これをふまえると、どんな海洋プレートもやがてはマントルへ沈み込んで地表から消えてしまうが、大陸プレートはマントルに沈み込むことがなく、分裂や衝突を繰り返しながら地表に存在し続けることがわかる。

①大陸分裂の開始
大陸の下でマントルの上昇流が活動、大陸に断裂ができて2つに分裂し始める。
現在のアフリカ地溝帯はこの段階。

②大陸分裂
大陸の分裂が進み、間に海洋プレートができる。その上に海水が入り込んで海洋が生まれる。現在の紅海やアデン湾はこの段階。

③海洋拡大
海嶺が海洋プレートを生産し続け海洋は拡大を続ける。大陸プレートの縁と海洋プレートは直接つながったまま。現在の大西洋はこの段階。

④沈み込み型造山帯
大陸プレートの移動が妨げられると、海洋プレートとの境界に破断ができ、海洋プレートが大陸プレートの下に沈み込み始める。この部分では火山活動が起こり、弧状列島や山脈ができる。
現在の日本列島や太平洋の南アメリカ西岸がこの段階。
また海洋は縮小しつつある。

⑤大陸縁成長・海洋縮小
海嶺は海溝から沈み込み、海洋底の生産は終わる。海洋は縮小し、両側にあった大陸が接近する。地中海はこうして形成された。

⑥大陸衝突・海洋の消滅
海洋は消滅し大陸どうしが激突する。これにより山脈が形成、現在のインドとヒマラヤがこの段階。

ウィルソンサイクルは3~9億年周期で超大陸の生成と分裂が繰り返されていることを説明する。
大西洋は最も最近の超大陸パンゲアの分裂(おそらく1億3000万年前~8000万年前)によってでき、太平洋はそれよりも前の超大陸の分裂にともなうパンサラッサという海の形の変化よって出来た。

日本列島の歴史
日本列島が現在の形になるまでの過程は大きく3つのステージに分けることができる。

①超大陸分裂による大陸縁の時代(7億~5億年前頃)
7億年前、超大陸ロディニアはスーパープルーム上昇によって分裂し、複数の大陸が誕生、その間には海洋地殻が作られながら広大な海洋が形成されていった。
日本列島の起源となる場所は、ロディニアが分裂し中国南部地塊と北アメリカ地塊に分離した場所の中国南部地塊の縁に当たる場所に該当する。
両地塊がさらに分離すると、間には海が侵入し、中国南部地塊に海洋地殻が接続した構造が作られた。これが日本列島の最も原始的な骨格である。ちなみに、中国南部地塊の断片をなす地層は隠岐、能登半島、飛騨山地に露出している。

②大陸縁での付加体による成長の時代(5億~2000万年前)
5億年前以降、海洋地殻に圧縮力が作用し、日本付近で海溝から海洋地殻の沈み込みが始まったことで、海溝付近では付加体による陸地の成長が始まった。付加体とは、海洋プレートの上に乗っていた堆積物が大陸プレートの下に沈み込む際にはぎ取られ、陸地側にくっついた部分を言う。
その後、4億年にわたり日本列島付近では陸地の成長が続き、400キロメートルほど海溝側に陸地が付加された。
この時、プレートの沈み込みに伴って付加体の一部も地下深部に引きずり込まれ、変成岩の地層ができ、ここに花崗岩マグマが貫入することで、日本列島を作る地殻を垂直方向にも成長させた。
恐竜が発掘される手取層群は、大陸の縁の前弧域で堆積した地層で、古い付加体の地層に覆いかぶさって、浅海、もしくは淡水性の地層として形成された。この層は整然と積み重なった砂・礫・泥からなり、チャートや石灰岩を含まないので、付加体と区別しやすい。
また日本各地の石灰岩の山は、海山の周囲に発達した珊瑚礁が海溝で付加されて陸地の一部になったものである。

③島弧での付加体による成長の時代(2000万年前~現在)
2000万年前になると、日本列島の地殻の下部にプルームが上昇、中国大陸の一部だった日本列島の地殻が大陸から引き裂かれ、日本列島は島弧になった。
また、分裂し陥没した場所には、玄武岩質の海洋地殻が形成され日本海が誕生した。
これに伴い、日本海側では激しい火山活動が起こり、このとき噴出した火山岩は変質により緑色をしているので、この岩石が分布する地域はグリーンタフ地域と呼ばれている。この地域には、当時の火山活動でできた銅や亜鉛に富む黒鉱という鉱物を産することが多い。
そして、2000万年前以降も、海溝側では付加体の成長が続き、日本列島は今なお成長を続けている。

マグマと溶岩の違い
マグマとは熱い岩石が溶融状態になったもの。
地球内部の熱によって溶けていると思われがちだが(私だ)、岩盤どうしが擦れ合うことによって発生する摩擦熱で溶けているらしい。
高温のものでは1200℃以上もある。地表に噴出する前の段階をマグマと言うのに対して、一度地表に現れたものは溶岩と言われる。
ちなみに、マグマとマントルを同じようなものだと思っている人がいるが(私だ)、マントルはカンラン石で出来た固体である。

マグマの構成物質
マグマの主成分はシリカ(二酸化ケイ素)で、ほかには金属などの元素や、揮発性成分として火山ガスが溶け込んでいる。火山ガスは噴火に際してマグマから分離して噴煙となる。火山ガスの大部分は水蒸気で、ほかに二酸化炭素、硫化水素、二酸化硫黄などが含まれる。ちなみに火山ガスの成分は、水蒸気以外有毒である。
さらに、マグマはその材料のカンラン石や、発生場所から地表までの通り道にあった岩石を運んでくることがある。このような岩石はゼノリスといい、地球内部の物質的な構成を知る重要な手がかりになる。

マグマの性質を決定する要因
シリカの量とマグマの温度でマグマの性質は決まっている。
シリカの量が多く、温度が低いと、粘り気が強く、白っぽくなる。これをデイサイト質・流紋岩質マグマという。
シリカの量が少なく、温度が高いと、粘り気が弱く、黒っぽくなる。これを玄武岩質マグマという。

マグマができる条件
以下の3つがある。

①高温
マントルのカンラン石が高温になると、圧力が同じでもカンラン石が溶けてマグマが生じる可能性がある。

②低圧
マントルのカンラン石が上昇して圧力が下がると、融点が下がるため、温度が同じでもカンラン石が溶けてマグマが生じる可能性がある。

③水の添加
カンラン石に水が添加されると、カンラン石の溶ける温度が大幅に下がり、高温や低圧にならなくてもマグマが生じる。

地震波の種類
地震波には伸び縮みが伝わる縦波のP波と、ズレが伝わる横波のS波がある。
P波は進む速度が速く(秒速5~6キロメートル)、固体の地殻・マントル・内核も、液体の外核も伝わる。また振れ幅が小さい。
S波は進む速度が遅く(秒速3~3.5キロメートル)、固体は伝わるが、液体は伝わらない。
また振れ幅が大きい。

震度とマグニチュード
震度は地震動の強さを表し、そのため同じ地震でも震源から離れると小さくなる傾向がある。また震源からの距離が同じ場合はマグニチュードが大きいほうが震度は大きい。
震度は以前は観測所での体感や被害の大きさから決められていたが、現在では各地の震度計が感知した加速度で決定されている。震度は国によって基準が異なり、日本では10段階の気象庁震度階級が使われている。
マグニチュードは地震の規模、つまり、放出された地震波のエネルギーの強さを表す。そのためマグニチュードは同じ地震なら同じ値である。基本的にマグニチュードが1上がると地震の規模は32倍になる。

海溝型地震と内陸活断層型地震
海溝型地震は、プレートの沈み込みによって起きる地震。
太平洋岸に、地震動による直接被害や津波をもたらす、マグニチュード8を超えるクラスの地震が、数十~数百年の短い間隔で同じ場所で繰り返し発生する。

内陸活断層型地震は、内陸部の割れ目である活断層が壊れてずれることで起きる地震で、規模はさほど大きくないものの、震源が都市に近い場合は大きな被害をもたらす可能性がある。
1つの活断層による大地震発生間隔は1000年から数万年と非常に長いが、日本は活断層の数が大変多いので(カウントされているものだけで2000を超える)、地震が多発しているように感じる。
ちなみに、西南日本内陸部の断層は横ずれ型が多いのに対し、東北日本内陸部の断層は縦ずれ型が多い。
Calendar
<< April 2024 >>
SunMonTueWedThuFriSat
 123456
78910111213
14151617181920
21222324252627
282930
search this site.
tags
archives
recent comment
recent trackback
others
にほんブログ村 科学ブログへ にほんブログ村 科学ブログ 恐竜へ カウンター
admin
  • 管理者ページ
  • 記事を書く
  • ログアウト