板倉聖宣名言集

 昨日は板倉聖宣さんのテーゼは身も蓋もなさすぎ、とか言ってたけど、ごめん。

 やっぱこういう勢い任せの大胆な発言好きだわ。

 ということで、個人的にシビレた板倉発言をここにランキング形式で紹介します。

第7位
 学校では一般的法則性を教えるんだから「法則性を信じなさい」という形でいくんだけれども、世の中のものはみな法則性があるとはかぎりません。対象によって、あったりなかったりするわけです。(『科学と教育 科教育学を科学にするための理論・組織』138ページ)

 板倉さんがアメリカの哲学者っぽいのがわかる発言。

第6位
 科学的な考えというのは、無限に多くのものについて片端から(略)調べるのではなしに、系統的に筋を立てて、道を立てて考えて実験するということです。(123ページ)

 これはサイモンの満足モデルそのものである。

第5位
 学問をやってきた人たちは昔から手弁当で、道楽としてやってきたわけです。「月給をくれるから科学研究をやる」というようになったのは1900年代に入ってからのことです。「月給をくれないのに、時としては命が保障されないのにやる」、科学というのはそれほど人を夢中にさせるものなのです。

 確かに昔の科学者は楽しそう。ちなみにイギリスの貴族院議員は名誉職でギャラをもらってない。でもやるんだよな。

第4位
 一般的法則性を見つけることは、私たちでもできます。しかし、「この子はお母さんがいない」とか、「昨日どういう事件があった」とかは、私たちには全然わからないわけでしょ。ところが、そのことと今日の授業とが関わりあったりするわけです。そういうことは現物の先生にしかできないでしょ。

 こういうことが考えられるような教育学者ってなかなかいなかったりする。

第3位
 ある意味では、「科学というのは真理だから押し付けてもいい」という考えがある。ところが私たちは、「実験で決着できることは、何も言わなくてもいい、実験が間違っているとは言わせない。実験するまではいくら間違って考えてもいい、間違えた方がいい」というのです。(183ページ)

 いよいよベスト3。科学に詳しいと思い込んでいる人がつい陥りがちな考えである。

第2位
 本なんかでも、初版と再版と三版とどれがいいかというと、初版がいいんです。(略)「名著」と言われるものって、一種の迫力があります。迫力があるというのは、思想が読み取れるからでしょ。事実を読み取らせる本は後のほうがいいですが、その人の思想を読むとすれば、正しいことだけではなく、間違ったところ、間違え方が重要になります。「この人は何を考えているか」ですね。ある考えにとらわれるから勇み足をするわけです。その間違いを起こしたことからみて、この人はなんとこの考えを気に入っていたか、この考え方を大事にしていたかわかるわけです。(186ページ)

 これ、目からウロコだったw

第1位
 だから授業参観というのは、授業を見た人が「あそこを直したほうがいい」「ここをよくしたほうがいい」ということをよく言いますが、私はそれにはほとんど否定的です。それは授業参観だけでなくて、あらゆる人間的行為について、後から「ああしたらよかった」「こうしたらよかった」ということはほとんど意味がないということです。ですから私は、「あなたの言うようにこうすればよかったということがあったのは確かだ。しかし、あなたがもしこの反省のような自己批判に従って授業をやったら、この授業よりずっと悪くなるのは確実だ」などというのです。(185ページ)

 この前退職しちゃった塾が、とにかく授業反省会(ダメ出し)が大好きな塾で、事前練習通りに授業を進めないといけなかったんだよ。それこそ一字一句。
 ほいで、だんだん私も、どうやったら上層部にダメ出しされないかが優先されちゃって、肝心の授業を受ける子どもたちのことを見れてなかったな、ってすっごい反省してさ。
 そう言う意味で、板倉さんのこの発言はすごい溜飲が下がったよ。もちろん自分の至らない点は素直に反省すべきだけど、あまりにダメ出しばっかりだと、こっちも前向きに考えられなくなっちゃう。
 これは自分が今後子どもに接する際にも、肝に銘じ無ければいけないことだと思う。ダメ出しを1つするなら、良いところを3つは見つけないといけない。

理科教育法覚え書き②

参考文献:板倉聖宣著『科学と教育 科教育学を科学にするための理論・組織』

授業プラン《電気を通すもの・通さないもの》
 《電気を通すもの・通さないもの》は、金ピカや銀ピカの光沢のあるもの(金属)は、すべて電気を通す性質があるということを生徒に学習させるために、身近な一円玉から、日常的にはあまり見ない方鉛鉱や黄鉄鉱まで、電気がつくかどうかを、ひとつずつ予想を立てながら、実際に実験していく授業プランであるが、仮説実験授業自体で考えれば、生徒に学ばせたいのは、実験のドキドキ感や、知的好奇心、科学的な物の見方そのものであると言える。
 つまり、教科書に書かれている正解の確認作業ではないので、原理的に生徒が授業のイニシアティブを握るしかなく(あらかじめ予想を立てて目的意識を持って実験に参加する)、だからこそ楽しいのである。

 このような仮説実験授業のポイントには以下が挙げられる。

①取り上げられる問題が、小学校や中学校でやっていないようなもので、しかも大人にとってもかなり難しいということ。
これは、あらかじめ正解を知っている人が退屈しないし、勉強ができる人と苦手な人の差がなくなり、同じ土俵で授業に参加できる(つまり予習や復習が意味をなさない)。

②その問題について学校で全然教わっていないとは言え、考え方の筋道が全くないわけではないということ(電気や電池自体の断片的な情報はなんとなく持っている)。
これにより、誰しもが問題の予想を選ぶことができる。

③問題の予想をする際には、あくまで「事実」(電気がつくかつかないか)のみを取り上げ、仮説を出し合うわけではないこと。
これにより、問題の論点が明確化し、次の実験へテンポよく進むことができる(仮説を考えるのは高度であるため)。

④予想が合っているかどうか確認するための実験そのものの手順は非常に簡単で、専門的な技術を必要としないこと。
これにより誰もが気軽に授業を行える。

 総じて、実験に参加する敷居をできるだけ下げているものの、予想を立てる内容自体は意外に高度であることがわかる。そのため、生徒は実験結果の展開が読めず(予測できない)、ワクワクしながら授業に参加できる。
 このような仮説実験授業が生徒にとって魅力的な理由は、仮説実験授業が、一般的な学校の情報詰め込み型の授業や成績とは異なる、生徒の主体的でクリエイティブな物の見方を尊重しているからだろう。

「易しい問題から難しい問題の順に教えるのがよい」は正しいか
 著者の板倉聖宣は、「易しい方から難しい方に行け」と言っても、ほんの僅かな難易度の差しかない問題がずっと続いたり、反対に難易度の差がありすぎるのは授業としてはあまりよくなく、結局は程度の問題であると述べている。
 その上で、2つか3つの選択肢のある質問をしたら、だいたい同じくらいに各選択肢を選ぶ人数が分散する方が、子どもは挙手がしやすいと主張している。
 易しい問題は、1つの予想に偏る上に多数派が正解してしまうので、少数派の不正解者が自信をなくし、次の問題で積極的に挙手をしなくなってしまう。
 したがって、1つの予想に偏ってしまう問題を行わざるを得ない場合は、多数派が間違ってしまうような難しい問題の方が望ましいというわけである。

 もっと言えば、易しい問題から難しい問題の順序で授業をすすめると、いつも不正解な人が決まってしまい恥をかかされ、正解者の方も当たりっぱなしで、バカバカしい問題をやらされ続けているということになり、お互いあまりいい気分にならない。
 これが難しい方からやると、少数派の正解者は、大多数の人が外れた問題に正解したのでいい気分になるし、外れた人もほかのたくさんの人も外れているので別に恥ではないと考える(つまり不正解者の学習意欲が低下しない)。

 このように板倉は、授業を行なう教師ではなく、授業を受ける子どもの立場に立って、授業の組み立てを考えている。
 この視点は、授業が教師と生徒の信頼関係で成り立つというような、教育的な意味でも重要だが、板倉がこの視点を重視するには、もう一つ大きな理由があると思われる。
 それは板倉が、科学的な認識について「他人との関係において認識する」ことが一つの筋だと主張し(『科学と教育』144ページ)、科学理論は社会的な同意(コンセンサス)によって客観的に担保されると考えているからである。

 それゆえに科学の教育は、多人数が参加する「授業」でなければならず、そのために参加者が尻込みせず積極的に授業に参加できる雰囲気作りが必要だというわけだ。
 私は、この主張は、理科の授業にとどまらず、現代の民主主義社会にとっても(民主主義が少数派の意見を反映しにくいシステムであるがゆえに)、非常に大切なことだと思った。
 板倉も著書でこのように述べている。

 少数派であっても自分の意見を貫徹する方法は二つあります。封建的なやり方は、自分が天下の王様になることです。しかし民主主義社会では、少数派でありながら自分の意見を貫徹する方法がまだあるわけです。それは、「科学の方法」です。そういう「少数派が勝つ方法を学ぶ」ということの含みもあって、私はどうしても集団教育でやりたいわけです。(145ページ)

授業プラン《光と虫めがね》
授業プラン《光と虫めがね》の流れは以下の通りである。

質問1:あなたの家に家に虫めがねはありますか?

作業1:虫めがねで新聞紙を燃やしてみる。
①太陽の光がよく当たるところに白い紙を置いて、その上に虫めがねの影を丸く映す。すると虫めがねと紙の離れ方によって、いろんな形の影ができる。
これは虫めがねのレンズが光の進む方向を曲げるため。
②これをふまえて、虫めがねと紙の距離を調節し、レンズを通り抜けた光が全部一ヶ所の小さな点に集まるようにすると、ほかのところが暗くなった分だけ、点の中の光がうんと光る。これは進む方向が変わった光が一点に集中しているからである。

作業2:次の質問についてみんなで話し合ってからもう一度新聞紙を燃やしてみましょう。
①どのようにやったらうまくもえますか。どのようにしたらうまくいきませんか。
②新聞紙と虫めがねは、どのくらいはなしたらうまくいきましたか。その距離は、虫めがねによってちがうことがありますか。
③新聞紙の黒く印刷されていないところでももやすことができましたか。(紙を燃やすこと自体が目的なら白い紙ではやらないが、科学的な認識が目的なら白いところと黒いところで燃え方がどれくらい違うのかは重要である)

[新しい科学の言葉]焦点と焦点距離:光がレンズで屈折していることを確認するため、線香から出る煙を使って光の道筋を可視化する。
この時、光が一ヶ所に集まる点を焦点という。レンズと焦点の距離はレンズによって決まっており、これを焦点距離という。

作業3:クラスにある虫めがねの焦点距離を、みんなではかってみましょう。

太陽の光を集めてものをもやす話:太陽の光を集められるのは虫めがねだけでなく、丸いガラスや水晶の玉でも可能である。丸いフラスコに水を入れたものでも、黒い紙を燃やすことができる(水から火を起こす)。
火を起こすことに苦労した昔の人は、ものをこすり合わせなくても太陽から簡単に火を起こせるなんて素晴らしいと、火を大切にした(聖火)。
ラボアジエの火付けレンズによるダイアモンドの燃焼実験や、丸い金魚鉢による火災などの紹介。
ガスの燃焼は数百℃だが、太陽光を集めると2000~3000℃にもなる。つまり遊びのようだが軽視できない科学の実験である。

問題1:①虫めがねで夜の明るい月の光を集めて新聞紙をもやすことができるでしょうか。
②白い紙の上に月の光を集めたら、太陽光と同じように丸い形になるでしょうか。月の形になるでしょうか(答え:月の形になる)。
問題2:暗い部屋で電灯をつけ、その光を虫めがねで白い紙の上に集められるでしょうか。
問題3:明るい外の景色の光を虫めがねで、部屋の中の紙の上に集めることができるでしょうか(答え:できる。しかも景色の光が映る)。

作業4:虫めがねでカメラを作る。

問題4:レンズの代わりに小さな穴を開けただけでも明るい外の景色は映るでしょうか。

カメラの生い立ちの話:900年前のイブン・アル・ハイサムの人間の目の構造と光に関する研究を紹介。暗い部屋に小さい穴を開けるピンホールカメラ(カメラ・オブスキュラ)はこの人が考えて、それがヨーロッパに波及した。
レンズ付きのカメラは1550年にイタリアの数学者カルダーノが発明、しぼりは1568年にイタリアのバルバロが初めて取り付けた。
ピントが合わせられるカメラは1657年にドイツのカスパル・ショットが発明した。

目の仕組みの話:カメラと目の構造はとてもよく似ている。

研究問題1:ロウソクや豆電球の光も虫めがねで集められるでしょうか。
①レンズをロウソクから壁の方にだんだん離していったらどういう像ができますか。
②レンズを壁の方からロウソクにだんだん近づけていったらどういう像ができますか。

幻灯機(プロジェクター)の仕組みの話

科学とは何か
 近代科学が生まれた頃(16~17世紀)には「迷信」と「スコラ学(神学)」と「科学」が三つ巴になっていた。スコラ学は迷信と対決していたので、迷信ではなく列記とした学問ある。ではスコラ学と科学は何が違うのだろうか。
 よく、事実に重きを置くのが科学だと言われることもあるが、スコラ学や迷信は本当に事実を大事にしないのだろうか。考えてみれば、基本的に人が信じるようなことは、どれも事実に基づいている(超能力によるスプーン曲げなど)。では、科学と、スコラ学、迷信を隔てるものは何か。
 実は、科学とは事実に重きを置くのではなく(むしろ迷信の方が“事実”を重視する)、仮説と実験に重きを置くのである。
 迷信は、個別的かつ特殊な事実を重視して、そこから一点突破を試みるが、科学は事実の再現性を重視し、そこから普遍的な規則性を見つけていく。
 例えば「磁石は鉄を引きつける」という事実があったとき、スコラ学は、磁石に関する事実を(「磁石はダイアモンドも引きつける」「ニンニクは磁力を弱める」などといった俗説を含め)、どんなものでもかき集め、ひとつの学問として構成していく。
 対する科学は、それら“事実”をひとつずつ検証し、その際に、実験などで客観的に再現できないことは、本当かどうかを判断しない(科学として扱わない)。
 つまり、「再現できないから嘘だと言われても、自分は確かにニンニクで磁力を弱めたんだ」、という人がいても、科学は再現できるものだけを事実と定義しているので、そもそも迷信やスコラ学とは、基本的な原則が違うのである。

理科教育法覚え書き①

 主に板倉聖宣を学ぶ単位。

 しかし歳をとると思考の嗜好も変わるんだな~、若い頃はこういう竹を割ったような主張が好きで、衒学的なこと言う奴をこのオレに分かるように説明できないこいつがバカとかボロクソに言ってたんだけどさ、まあ衒学的なのは今も大嫌いなんだけど、そのさ、自分を賢く見せようとしてわざと難しい言葉を使うんじゃなくてさ、まだ言語化されていないような新しい概念とか思想をなんとか一生懸命ひねり出そうとしたうえでのよくわからなさっていうのも世の中にはあるじゃん。
 で、そういう、綾みたいなものがある思想の方が、最近は「え?どういうことだろう??」って知的好奇心が刺激されて、心に残ったり、好きだったりする。
 言い切られちゃうとこっちはさ、ちげーよよくぞ言った!しかないじゃん。ツイッターの発言なんかはそんなんばっかなんだけどさ。
 やっぱりさ、世の中にはよくわからないとか保留っていうのも大事だよなって。そっちの方が世界は豊かなんじゃないかってね。

 んでさ、板倉さんはさ、本当にバッサリわかりやすく言ってくれる人でさ、科学哲学なんかを始めて学ぶ人はさ、もう究極的に分かりやすいから、ネットで喧々諤々な不毛な議論してねーで、この本を一冊読めばいいだろって思うんだけどさ、この人はパラダイム・シフトを認めてなくてさ。
 あれはアメリカで流行っているからみんな使っているだけで、植民地根性が抜けないんだよなあ、って言ってて、それはそれでいいんだけど、板倉さんのこの「なんで回路をつなぐと電気が流れるんですか?」って聞かれて電気が流れるように作ってあるからですって答えちゃう、この潔さっていうか、自明なことはいちいち突っ込むんじゃねーよ的な、行動主義的な態度は、すごいアメリカ哲学っぽいよなっていうw
 あいつらって神がいるかどーかは知らねーけど、その人が神を信じて幸せなら、とりま有用なんじゃねーの?みたいなこと言うじゃん。このズバリ言うわよ感が、学生時代はすごい好きだったんだけど、今はあまりに身も蓋もなさすぎて、永遠に答えが出ない問いでも、もうちょっと深く思考しようぜよってなってんだよねw

参考文献:宮地祐司著『生物と細胞 細胞説をめぐる科学と認識』

授業プラン《生物と細胞》の第1部「生物と細胞」
 《生物と細胞》の第1部「生物と細胞」では、細胞の発見者として有名なフックの経歴や、彼が生きた時代背景をはじめとして、フックがどういういきさつでコルクから細胞を発見したのかを、子どもでもわかりやすいイラストと文書でまとめている。
 著者が第1部で主張したいことは、フックは顕微鏡を使って観察したもの(ノミやシラミなど)を手当たり次第に写生したのではなく、「ただデタラメに見るだけではなく、筋道だてて見ていったら、みんなが気がつかなかったことが見つかるかもしれない」(本書14ページ)と、観察や実験をする前に、あらかじめ仮説や予想をたててから、顕微鏡を覗いたことである。

 これは本書では仮説実験と呼ばれ、著者が重視する重要な概念になっている(いわゆるアメリカの哲学者パースが唱えたアブダクションのことだと思う)。
 さて、フックの細胞発見につながる「仮説」は、「コルクが水に浮かぶのは目に見えないほど小さな隙間がたくさんあって、それで水に浮かぶのではないか」ということだった。
 しかし「たくさんの隙間に水が入ってしまったら、逆に水に沈むのではないか。となると、なにか特別な仕組みがあるのかもしれない」という自説の確認をするために、フックはなんの変哲もないコルクに対して強い目的意識を持って観察したのである。

 こういった、観察の前にまず予想を立てて、そのあと実際に観察することによって自分が立てた予想が正しいか間違っているかを確かめるという、17世紀にフックが行ったプロセスを読者にも追体験してもらえるように、本書の構成は工夫がされている。
 例えば、本書では問題と結果のページのあいだに必ず、読者(特に複数を想定)が予想を立てられるように、いくつかの予想の選択肢が提示されている。
 脂身、髪の毛、爪、骨、さらに目の水晶体・・・これらも本当に小さな部屋の細胞で出来ているのだろうか?読者は自分が選んだ予想が本当に正しいのかを、クイズ番組のように、いや当時のフックのようにワクワクしながら検証できるというわけだ。

 私は科学者ではないが、本書を読んで強くこう思った。自然科学の研究の醍醐味はまさにこの「予想の検証」にあるのではないだろうか。
 もちろん自然科学の研究には武谷三段階理論のような帰納法もアプローチとしてあるし、科学者側の事前の予想はバイアスや見落とし(昨今では不正や改ざん)をはらむかもしれないが、著者はそういう場合にも、まずは科学者側の主体的な働きかけ(アブダクション)なしでは科学という文化は成立しないと考えている(本書5ページなど)。
 つまり、科学とは客観的で無味乾燥な学問ではなく、もっと血の通った主体的で楽しい活動なのだということを、著者は強く訴えているのである。

細胞の発見から細胞説の提唱まで170年かかった理由
 シュワンが『動物および植物の構造と成長の一致に関する顕微鏡的研究』を発表し、細胞説を提唱したのは1839年で、1665年にフックが最初に細胞を発見してから、なんと174年も経っている。自然科学の発見は漸進的なデータの積み重ねによるものであるという一般的なイメージでは、この空白の時期は説明がつかない。
 著者は科学的認識は、目的意識的な実践・実験によってのみ成立する(本書112ページ)という板倉聖宣の主張を引用した上で、シュワンは観察を行なう前に、「種や部位を問わず動物の体はすべて細胞からできており、その細胞が増えて変化することによって成長が起こる」という普遍的な仮説を立てていたと論じている。
 つまりシュワン以前にも顕微鏡で細胞を観察していた科学者はたくさんいたが、「植物の発生の原因は細胞が増えて変化することだ」という友人シュライデンとの会話をきっかけに、すべての動物の部位は細胞で出来ているに違いないと考えた上で顕微鏡を覗いた科学者は、シュワンが初めてだったと言うのである。

 それは、結局、「主体的に予想を立てた人が、その170年間に1人もいなかったからだ」という結論に、ボクとしては落ち着いたわけです。(『生物と細胞 細胞説をめぐる科学と認識』105ページ)

 目の水晶体をありのままに詳しく観察したところで、それが細胞で出来ているなんて気づくはずがありません。(同書117ページ)

 したがってシュワンは、目的意識もなく手当たり次第にいろいろな細胞を調べて、細胞説にたどり着いたのではない。
 彼には「細胞説の検証」という明確な動機があり、その上で観察を行ったからこそ、一見細胞で出来ているように見えない部位は、もっと若い状態のものを観察し、それでも分からなければ発生段階の胚にまでさかのぼって、粘り強く細胞説を検証したのである(でなければ、目の水晶体の細胞は“見れども見えず”だったに違いない)。
 以上のように科学の発見とは漸進的なものではなく、あるときをきっかけにして急進的に起きる。これをトマス・クーンはパラダイム・シフトと呼んだ。具体的にはダーウィンの進化論や量子力学の発見などがこれにあたる。
 つまり、パラダイムとは、その時代その時代に生きる人間の科学的な認識を規定する思考の枠組みのことで、著者はこのクーンの哲学を「客観的にものを認識するためには、主観の働きを活発化して実践することによって主観と客観を対決させることが決定的に重要なんだ」(本書101ページ)と板倉聖宣の文脈に沿って解釈している。

授業プラン《生物と細胞》の第2部「細胞と生物」
 《生物と細胞》の第2部「細胞と生物」では、たった一つの細胞で生命活動をしている単細胞生物の紹介から、単細胞生物のようにヒトの細胞も環境を整えて栄養を与え続ければ生かしておけるかどうかを問題提起し、そもそも生き物が生きているというのはどういう状態を指すのか?という哲学的な思索を試みている。

 例えば、人間の体を構成する細胞一個一個は定期的に死に、3ヶ月ほどで体のすべての細胞は交換されてしまうというが、このような新陳代謝は、個体としての人の死ではない(細胞としては死んでいるが、個体としては生きている)。
 これとは逆に、ヘンリエッタ・ラックスさんの子宮がんの組織「ヒーラ細胞」は、ヘンリエッタ・ラックスさんが病気で亡くなったあとも、1951年から現在に至るまでシャーレの中で生き続けている(個体としては死んでいるが、細胞としては生きている)。
 つまり単細胞生物では「細胞の死」はすなわち「個体の死」であるが、多細胞生物において「細胞の死」と「個体の死」が一致しないというのだ。

 本書はさらに面白い例を挙げる。ヒトの体は60兆個の細胞で出来ているが、医者が「ご臨終です」と言った瞬間、その人の60兆個の細胞すべてが一斉に死ぬわけではない。となると細胞が全体の何割死ねば、個体の死と考えていいのだろうか?
 仮に「全体の半分の細胞30兆個以上が死ぬことが個体の死である」と定義するなら、29兆9999億9999万9999個と30兆個の境界はなんなのだろうか?
 まるで哲学のテセウスの船のような命題であるが、著者は個体の死は連続的に起こるものであり、ここからが個体の死という一瞬は存在しないと論じている。

 そして章の後半では、心臓や小腸、肝臓といった臓器の働きに、一個一個の細胞がどのように関わっているかを、クイズ形式で取り上げている。
 心臓の細胞は心臓と同じように細胞一個一個も伸縮しているのか、小腸の細胞は細胞一個一個がそれぞれ栄養分を吸収しているのか、肝臓の細胞は細胞一個一個が栄養分を貯蔵しているのか、などの興味深い問いが続き、これによって生徒は、細胞一個一個の働きがたくさん集まって、臓器全体の働きは成立しているということを楽しみながら学習できるようになっている。

 つまり、生命活動とは、細胞一個一個がそれぞれ仕事をしていることによって成り立っているのだ。したがって細胞を壊してしまうと、全体の働き(個体としての生)は失われてしまう。
 部分は全体を兼ねるというわけである。

いくら細胞をたくさんスケッチしても細胞説が提唱できなかった理由
 フックの「コルク細胞の発見」(1665)からシュワンの「細胞説の提唱」(1839)まで174年かかったわけだが、フックが王認学会で発表したノミやシラミなどの写生図をまとめた『ミクログラフィア』(1655)の影響で、顕微鏡を使って微小な世界を観察する人は当時もたくさんいた。イギリスの医師ネヘミア・グルーもそんな一人で、顕微鏡を使って植物の組織の緻密なスケッチを残した。

 しかしこれほどまでに細かいスケッチをもってしても、「生物はすべて細胞からできている」という細胞説の発見にたどり着くことはなかった。
 グルーは植物組織の模様の美しさや精巧さを、いかに本物そっくりにスケッチするかということに関心があり、「生物はすべて細胞が集まってできているにちがいない」という見立てをして観察に臨んだわけではなかったのである。
 実際グルーは、フックが名づけた「cell(小部屋)」という言葉を使わずに「bladder(袋)」という言葉で細胞(に当たるもの)を呼んでおり、フックの研究を直接引き継いだわけではなかった。
 またグルーが細胞を認識せずにスケッチを行っていた間接的な証拠としては、細胞と細胞の仕切りを繊維の縦糸と横糸のように描いていたことからも伺える。

 とはいえグルーの図は大変美しく、見ごたえがあり、例えばミカンの実のつぶつぶはひとつの細胞であるという俗説が誤りであることを検証できるほど、緻密なレモンの図も残されている(実のつぶつぶの中にもさらに細かいたくさんの細胞がある様子がしっかりと書かれている)。このようにグルーの図を引用し、参考書に書かれる段階で間違った説明がなされることもあった。

 いずれにせよ、「フックがコルクの細胞を発見してから、しだいに、いろいろな人が顕微鏡でいろんな生物をのぞいて、だんだん生物は細胞からできているらしいということが言われるようになった」という歴史観(本書146ページ)は誤りで、「生物はすべて細胞が集まってできているにちがいない」という予想を持って確かめようとする人が現れない限り、いくらグルーのように顕微鏡を用いて正確なスケッチを書いたところで、細胞説という科学的な認識は生まれなかったのである。

生物学概論覚え書き②

参考文献:トレシー・グリーンウッド、ケント・プライヤー、リチャード・アラン共著、後藤太一郎監訳『ワークブックで学ぶ生物学の基礎』

生物の分類の変遷
まず生物は、古代から植物と動物の二つに大きく分けて考えられてきた。
その後、近代になり生物学が博物学に吸収されると、生物は鉱物と共に、植物・動物・鉱物の3つに分類されていたが、やがて生物学が博物学から別れると、再びリンネによって植物と動物の二界説が提唱された。
これは動物ではない生物は全て植物にしてしまう考え方であった。つまり分解者である菌類や細菌類は植物として分類された。

19世紀になり顕微鏡が発明されると、レーウェンフックが微生物を発見、これにより二界説では新たな生物群を分類しきれなくなり、生物は、植物界・動物界・原生生物界の三つに分類されるようになった。これを三界説といい、1894年にヘッケルが発表した。
ちなみに原生生物界とは、ヘッケルが1866年に創設したグループで、ミドリムシのように植物とも動物ともとれるような原始的な生物など(原生生物、細菌、真菌類、単細胞藻類)が、ここに分類された。

次に出てくる五界説は、1969年にホイタッカーが提唱した説で、生物を、植物・動物・菌・原生生物・モネラの5つに分類するものである。
モネラ界とは、すべての原核生物(細胞内で核と細胞質の区別がない生物。細菌やラン藻など)が含まれるグループである。
原生生物界には、細胞内で核と細胞質の区別があり、植物、動物、菌、モネラのいずれにも属さない単細胞生物が分類された。

さて、五界説では、モネラ界と、残り4つの界を、原核細胞をもつものと真核細胞をもつものの2つに分けていたが(2ドメイン。ドメインとは界よりも大きな分類単位)、1996年に、メタノコッカス・ジャナスキーという古細菌の全DNAが解読されたことによって、生物は2つではなく、3つのドメインからなることがわかった。
この細菌は、極限環境生物であり、85℃の高温の環境に生息する。これは真核生物のみならず、ほとんどの細菌にとっても致死的な温度である。
この細菌と、細菌類、真核生物との遺伝子には共通部分がたった44%しかなかったため、2つだったドメインが3つに修正された。

こうしてウーズによって1990年に提唱された3ドメイン説は、真正細菌ドメイン・古細菌ドメイン・真核生物ドメインの3つに生物を分ける説である。

真正細菌ドメインは、古細菌ドメイン同様、明瞭な核や細胞小器官を持たない。しかし古細菌よりも穏やかな環境を好む。よく知られている病原菌や、多くの無害な細菌、シアノバクテリア(ラン藻類)が含まれる。

古細菌ドメインは、真正細菌に多くの点で似ているが、細胞壁の組成と代謝特性が大きく異なり、原始地球の環境に似た過酷な環境に生息する。硫黄、メタン、ハロゲン(塩素、フッ素など)を使って代謝をして、多くの種類は極限の温度や塩分濃度、pHに耐える。

真核生物ドメインは、核と細胞小器官がある複雑な細胞構造を持つ生物が含まれる。つまり伝統的な五界説のうち、植物、動物、菌、原生生物の4界が該当することになる。

オゾンホールの拡大とその影響
地表から17~26キロメートル上空の成層圏の上部には、オゾンの薄い層が存在する。
オゾン層は太陽からの有害な紫外線の99%を吸収し、地表に届くのを防いでいる。
オゾン層が1%減少すると、地表に届く紫外線は2%増えると言われている。

紫外線は生物のDNAを傷つけるため、これが増加すると、深刻な日焼け、皮膚がんや白内障の増加といった人間の健康に関わる問題の他に、動物の免疫系の抑制、土壌微生物の減少、植物の生育阻害、穀物収穫量の低下、森林の生産力の低下、植物プランクトンの減少、スモッグの増加、さらに地球規模の気候変動の影響になる可能性が高い。

オゾンは極めて不安定で、人間が生産したわずかなオゾン層破壊物質によってたやすく壊れてしまう。
オゾン層破壊物質には、クロロフルオロカーボンやハロン、臭化メチル、メチルクロロホルム、四塩化炭素があり、これらが成層圏まで上昇し紫外線を照射されると、反応性が高い塩素原子が放出、この遊離塩素がオゾンと反応することで、オゾンは酸素分子と一酸化塩素分子になってしまう。

オゾン層破壊は1984年に初めて取り上げられた。研究者は、南極大陸上空の成層圏上部のオゾン層が、南極の春から初夏の間に破壊されていることを発見し、オゾンホールと呼んだ。
しかしそれは「穴」というよりは、著しいオゾンの濃度低下で、オゾンの水準が50~100%の範囲で減少していた。
2000年には、南極上空のオゾンホールの規模は過去最大になり、さらにオゾン層の破壊は北極の空でも観測された。1999~2000年にかけての冬のあいだに、北極上空18000メートルのオゾン層の水準は60%減少した。

1987年にモントリオール議定書が採択されて以降、各国はオゾン層破壊物質の消費を70%削減したが、オゾン層破壊物質の段階的な削減はまだ完了しておらず、クロロフルオロカーボンの闇市場も存在している。
とはいえ、成層圏の遊離塩素の量は1999年あたりをピークに、今後1世紀以上かけて減少すると見積もられている。
2050年までには極地のオゾンホールは1975年の水準に戻るとされるが、1950年以前の水準には、さらに100~200年はかかると考えられている。

自然環境における水循環
水が集積、浄化され、地球上の限られた供給源に分配される一連の流れを水循環と言う。
雨水は、内陸部の水源に水を補給するとともに、土地を侵食し、溶存する栄養分が生態系内、生態系間を運ばれる際の主な溶媒となる。

地球全体で見ると、海からの蒸発量は、海への降水量を上回るが、これは海から蒸発した水蒸気が風によって陸上へ運ばれるためである。
一方、陸地では、地上への降水量が、地上からの蒸発量を上回る。
これは、降水量の一部が雪や氷となり閉じ込められるからであるが、ほとんどの水は地表や地下を流れて、最終的には海へたどり着く。こうして主要な水の循環は完結する。

生物、特に植物は、この水の循環に多かれ少なかれ関与しており、海上では水蒸気のほとんどは蒸発によるものだけだが、陸上での水蒸気の90%は植物の蒸散によるものである。

また、人間の活動も水循環に大きな影響を与えている。例えば、川やダム、地下からの水は水道水(生活用水)として消費され、農業、発電、工業、森林伐採や造林などの産業活動、さらに地球温暖化による、水の蒸発量と降水量の急増(水循環サイクルの加速)、氷河の融解も、水循環に大きな影響を与えている。
なにより人間は産業革命以降、人口が爆発的に増大している。これに伴う急速な都市化や開発は、森林の減少、砂漠化、生態系の破壊、土砂流出(洪水)、水不足など、深刻な環境問題を引き起こしている。

ちなみに地球上の水の97%は海水で、淡水は水全体のわずか3%、しかもその淡水の70%は北極と南極で凍っている。

参考サイト:国立環境研究所 http://www.nies.go.jp/nieskids/index.html

消化管と食餌との関係
ヒトなどの雑食動物の食事内容は多様性に富んでおり、植物をメインにたまに肉を食べる動物や、植物と肉をほぼ等しく食べている動物もいる。そのため消化管の構造も多様である。
ヒトの胃は消化管全体の20~30%を占め、ほかの雑食動物に比べると小さい。水素イオン濃度(酸性度)はpH2である。
小腸の長さは身長の10~11倍で、ほかの雑食動物よりも長い。
盲腸はあるが、あまり発達していない。
大腸の長さは比較的長い。
以上から、胃の水素イオン濃度はどちらかというと肉食動物に近く、腸の長さは植食動物に近いことがわかる。

イヌなどの肉食動物は、消化管における微生物発酵はほとんどないか、全くない。肉の消化が繊維質の多い植物(セルロース)の消化に比べて容易だからである。
イヌの胃の容量は消化管全体の60~70%で、水素イオン濃度はpH1か、それ以下。
小腸は短く体長の3~6倍ほどで幅が広い。
盲腸は未発達か、ない。
大腸は単純で短い。

ウシは、胃内細菌との共生関係に依存する反芻性植食動物である。
そのため、ウシの胃は巨大で容積が消化管全体の70%を占め、セルロースを分解する微生物のための部屋(第一胃=ルーメン)で拡張されている。
胃の部屋は複数あり、そのため食物の移動が遅くなり、消化しにくいセルロースを分解する時間が十分に確保できる。
ルーメン内の微生物は揮発性脂肪酸を生産しエネルギーを供給し、微生物自身も消化されることでルーメンにタンパク質が供給される。胃の水素イオン濃度はpH5~7。
小腸は体長の10~12倍で、盲腸は短いか中程度(これが後腸消化タイプのウサギでは非常に長い。ウシの胃の代わりを盲腸が担っているため)。
大腸の長さも中程度で、ここでの発酵はあまり重要ではない(これもウサギではとても長い)。

生物学概論覚え書き①

 いよいよ理科の単位の履修が本格化してきたんだけど、試験範囲が懐かしの外国史概説並みに広い単位がこれ。単位認定試験では、レポート課題の範囲外からの出題が多いので、300ページ弱あるニュージーランドの高校のテキスト(でかくて重い)を網羅的に勉強する必要がある。
 ちなみに、この教科書、ほとんどの問題が記述式でお国柄を感じる。日本は東大でさえ作文問題をやめちゃったもんな。そんなわけで、このテキストは高校生対象ではあるんだけど、内容的には大学初年時のレベルも含んでいる。
 そして対立遺伝子の記述問題が究極的に難しい。いくつかの論文を読んでもイマイチよくわからないので、T大の生化学博士課程のあのお方に電凸する予定です。

主な参考文献:トレシー・グリーンウッド、ケント・プライヤー、リチャード・アラン共著、後藤太一郎監訳『ワークブックで学ぶ生物学の基礎』

細胞膜の構造
細胞膜とは、生物と外界を隔てる境界である。
細胞膜の構造は、かつてはロバートソンが提唱した単位膜モデル(1959年)が有力だった。
これはリン脂質の二重膜をシート状のタンパク質が覆っているというモデルであり、細胞膜の厚さとも合致はしたが、タンパク質は水をはじくため、生体膜のモデルとしては疑問も残った。

その後、ベンソンとグリーンが1968年に、脂質に球状のタンパク質がくっつき、そのサブユニット(タンパク質複合体を構成する単一のタンパク質分子のこと。ポリペプチド鎖)が疎水結合で平面上に広がったモデルを考えたが、X線回折などにより細胞膜の基本的な構造が脂質の二重膜であることが明らかになったため、このモデルも否定された。

このようないきさつで、誕生した説が1972年にシンガーとニコルソンが提唱した流動モザイクモデルである。
これは、「単位膜モデル」のようにタンパク質分子が脂質の外側を覆うのではなく、脂質の二重膜の中に埋め込まれているモデルで、脂肪分子はそれぞれの尾部をお互いに向けることで流動的な二重層を構成している。
タンパク質分子は、この層に流動的に漂っており、能動輸送(物質のエネルギーを消費して濃度勾配に逆らって積極的に物質を移動させること)などの機能を担っている。

流動モザイクモデルのそれぞれの部位の役割は以下のとおりである。

糖タンパク質
糖鎖がついたタンパク質で、細胞認識や免疫反応において重要な役割を持ち、ホルモンや神経伝達物質の受容体としても働く。糖脂質とともに膜構造を安定化させる。

コレステロール
脂質の二重膜に含まれることで、リン脂質がくっつきすぎるのを防ぐ。コレステロールは膜の流動性を調節して、膜の安定性を維持する。

脂質膜を貫通しているタンパク質
細胞内への特定の分子の取り込みや、細胞からの排出を制御している。イオンや炭水化物などの特定の物質はこのチャネルタンパク質を介して膜を通過する(選択的透過性)。

また、細胞膜は不完全な半透膜なので、水のように脂質膜を直接通過する物質もある。

参考文献:議田博子『生体膜からみた高校生物教育の体系化に関する一考察 ~実験シリーズの開発を中心に~』

対立遺伝子の意義
有性生殖をする生物のほとんどは、対になる染色体である相同染色体のセットを持っており、その片方のセットは一方の親に由来し、双方の親からどのようなセットを受け継ぐかで発現する形質が異なる。

遺伝の法則を研究したメンデルは、エンドウのいくつかの形質において、同一個体で同時に現れない、異なる2種類のバージョンがあることに着目した。
例えばエンドウの種子の形には、丸とシワの2種類の形質があるのだが、これらは同時に発現することはない。
また、種子が丸い個体と、種子がシワになっている個体を交配しても、二つの形質が交じり合うこと(融合説という。例えば丸とシワの中間的な形の種子ができるなど)はない。
このような形質を対立形質といい、この形質に対応している遺伝子を対立遺伝子(アレル)という。対立遺伝子は染色体上で同じ場所(座)に位置して競合している。

集団遺伝学の分野では、対立遺伝子は同一生物種の集団の個体の多様性を担保するものであると考えられている。
対立遺伝子の種類が多ければ多いほど、その組み合わせで様々な個体や系統、時には新種ができ、さらに環境の変化や伝染病などによる個体数激減や絶滅のリスクは低減されるというわけである。

対立遺伝子は遺伝子突然変異によって生じると言われている。
突然変異とは、同一種の個体間に見られる形質の差異である変異が突然生じ、非連続的で遺伝性であるものをいう。
突然変異には、機能欠失型と機能獲得型があり、機能欠失型には完全に機能を失う場合と、部分的に機能を失う場合がある。機能獲得型には、既存の機能を妨げる機能を獲得する場合と、新たな機能を獲得する場合がある。
遺伝子突然変異は、10万回に1回、もしくは100万回に1回というわずかな確率で起こる遺伝子の複製ミスによって引き起こされる。
突然変異には、塩基1つが置換されるものから、塩基が新たに挿入されたり、欠損することで変異箇所以降の塩基配列が全てずれ、大規模な読み込み枠の移動(フレームシフト突然変異)をもたらすものまである。

例えば赤血球が細く尖った形になり、毛細血管を通りにくくなることで起こる鎌状赤血球貧血症という病気は、ヘモグロビンの異常によるもので、この変異はヘモグロビンの一部(β鎖)の情報を担う遺伝子の17番目の塩基がチミンからアデニンに変わったことによって引き起こされる。
このたった1つの塩基の複製ミスによって、6番目に作られるアミノ酸がグルタミン酸からバリンに変わり、酸素を離した時にヘモグロビンが凝集、これにより赤血球内の浸透圧が低下(ヘモグロビンが塊になって溶けにくくなるから)、水が出て鎌状に潰れてしまう。
ちなみに鎌状赤血球は、貧血や血行障害を起こすが、マラリアにはかかりにくい(すぐに溶血するのでマラリア原虫が増殖できない)というメリットがある。
遺伝子突然変異による病気の例はほかにも、地中海貧血(βサラセミア)、脾臓線維症、ハンチントン病などがある。

突然変異を引き起こす原因には、紫外線や放射線(X線、γ線、中性子線)、化学物質が挙げられる。
亜硝酸塩やマスタードガスという毒ガスのほか、食品添加物や農薬として使われていた物質(甘味料のチクロ、赤色1号、防腐剤のAF-2)やタバコやアルコール、脂質の多い食事も突然変異を誘発する。

参考文献:吉田邦久著『好きになる生物学』

ヒトゲノムプロジェクト
ヒトゲノムプロジェクト(HGP)は、23対あるヒトの各染色体の連続した塩基配列を読み取る計画で、アメリカを中心に世界中の多くの組織が関わって遂行された。
その一方で、1998年にアメリカのセレラ・ジェノミクス社(初代会長はクレイグ・ベンター)が商業的にHGPに乗り出したことで、HGPは競争的なプロジェクトになり、結果的に公共的なHGPも加速した(セレラ社はヒトゲノムのデータベースを有料化しようと考えていた)。
こうして2000年に両者が最初のドラフトゲノム(ゲノムの概要のこと)を解読し、現在では全ゲノム配列が高品質な配列として利用できるようになった。
これに加えて、遺伝子の同定・配列決定・マッピング(染色体上の位置を決めること)が行われた。

HGPは以下の重要な研究結果を残している。
①ヒトゲノム上のタンパク質をコードする遺伝子は考えられていた数(少なくとも10万以上)よりもずっと少なく、たった2万~2万5000である。
②当初は埋めることができなかったギャップ(未解読領域)が400分の1の341に減った。
③極めて高い精度で、遺伝子を含むゲノム上の99%が読まれた)。
④ほぼすべて(99.74%)の既知の遺伝子を正確に同定。
⑤正確かつ完全であるため、病気の原因を体系的に研究することができる。

次にHGPによる医学的な恩恵は以下のとおりである。
①遺伝子検査による疾病と疾病素質の診断が改善。
②遺伝子検査による病気の保因者の特定。
③遺伝子配列から得られるタンパク質の構造を使ってより良い薬をデザインできる。
④変異遺伝子の修復を目的とする遺伝子治療の成功率が高まる可能性。
⑤夫婦が子どもの病気の原因となる遺伝子変異を持つ可能性を調べることができる。

医学以外の恩恵には以下がある。
①遺伝子検査により、家族関係について知ることができる(裁判における父親の特定など)。
②DNA分析によって科学捜査が進歩する。
③ヒトとほかの生物との進化的な関係について理解が深まり、より正確な分類ができる。
④ヒトとヒトの祖先のDNA配列を比較することで、ヒトの進化の理解が深まる。

一方で、HGPによる倫理的な問題や課題もある。
①多くのバイテク企業が自社が解読した配列情報の特許を取ってしまうこと。
②保険会社などの第三者が、遺伝子検査の結果を見る権利があるかどうか。
③病気に対する治療法が見つからない場合、病気の原因になる遺伝子の知識は役に立たないこと。
④遺伝子検査は高額で、誰が支払うべきかを判断することが難しい。
⑤ゲノム情報は遺伝するため、個人のゲノムは家族の情報も含んでいる。
⑥遺伝子情報による差別が行われないようにするための法規制。

さて、HGPの次の挑戦は、遺伝子によって作られるタンパク質の同定と、その働きを調べ、遺伝子疾患に対する理解を深めることである。これをプロテオミクスという。
さらにヒトゲノム以外の他のゲノム配列プロジェクトも開始され、すでに100以上の微生物とウィルスのゲノムや、ミツバチ、線虫、アフリカツメガエル、フグ、ニワトリ、ラット、イヌ、ウシなどが解読されている。
また2002年には、国際ハプロマッププロジェクトが、ヒトのハプロマップ(人種、民族、体質などの多様性や、どういう進化をたどってきたかを調べるための遺伝子地図。ハプロタイプとは対立遺伝子の組み合わせのパターンのこと)を作成することを目的に始まった。
最初のデータは、アフリカ、アジアとヨーロッパに祖先を持つ4つの集団から取られ、現在では、ほかの集団も含めて、ヒトの遺伝的多様性に関する分析が行われている。

参考文献:フランク・ライアン『破壊する創造者』

アポトーシスとネクローシス
アポトーシスとはプログラムされた細胞死のことで、特定のシグナルに応答する正常な細胞の自殺の過程である。
アポトーシスは、成体における細胞数の維持や、ウィルスに感染したり、DNA損傷を起こしている危険な細胞に対する防御など、重大な役割を担っている。
また、アポトーシスは発生の過程で、指の間の水かき状の細胞を殺し、指を形成するなど、胚組織を“彫刻”する。
ここで発生した細胞の残骸や破片は完全に処理される。

一方のネクローシスは、プログラムされていない細胞死(壊死)のことで、細胞が外傷を受けた際に、その内容物を細胞の外へばら撒いてしまう。
この時ばらまかれた内容物には、老廃物や消化酵素を含むものもあるので、これが炎症を引き起こす。

アポトーシスは、細胞の生存を助ける因子(正のシグナル)と、細胞を死なせる因子(負のシグナル)とのバランスによって制御されていて、このバランスが崩れると不完全なアポトーシスを招いてしまう。
例えば、アポトーシスの発生が低いと、不死になってしまった細胞が暴走的に増殖を繰り返し、がん化する。

アポトーシスは以下の段階を経て行われる。
①細胞が収縮し、隣り合う細胞との接触を失う。クロマチン(DNAとタンパク質がくっつてできた繊維)は凝縮し分解され始める。
②核膜が分解され、細胞容積が小さくなる。クロマチンはクロマチン体に凝縮する。
③細胞膜の表面にゼオーシスという泡状の突起ができる。
④核が崩壊するが、膜に囲まれた細胞小器官は影響を受けない。
⑤核は小球に分断され、DNAも小さい破片に分断される。
⑥細胞は多数のアポトーシス小体に分断、食作用により速やかに吸収される。

また、アポトーシスは以下のように制御される。

正のシグナル
アポトーシスを抑制し、細胞の正常な機能を促す。
具体的な例としては、インターロイキン2という種類の免疫細胞から出されるタンパク質(サイトカイン)が細胞の生存のシグナルを出し、細胞死を阻害するbcl-2タンパク質や成長因子を働かせる。

負のシグナル
死の活性剤と呼ばれ、細胞死へとつながる変化を起こす。
具体的な例としては、DNA損傷や細胞飢餓などのストレス応答として、細胞自身が発する誘導シグナルが、細胞内のがん抑制遺伝子p53を活性化させ、細胞死を誘導する。
このときミトコンドリアから流出したシトクロムc(細胞呼吸で電子伝達系を担うタンパク質)が、カスパーゼを調節するApaf-1に結合して、カスパーゼ9が活性化、アポトーシスが起きる。
ちなみにカスパーゼとは、アポトーシスのシグナル伝達経路を構成する、重要なタンパク質分解酵素(システインプロテアーゼ)である。

また、細胞死の受容体(デスレセプター)は、免疫系などの細胞から発信されるTNF(リンホトキシンなど)やFasリガンドなどのシグナルに応答して細胞死を誘導する。
シグナルを受けたデスレセプターはアダプター分子を介してカスパーゼ8を活性化する。

参考サイト:http://www.geocities.jp/mizuhase/index.htm
Calendar
<< November 2020 >>
SunMonTueWedThuFriSat
1234567
891011121314
15161718192021
22232425262728
2930
search this site.
tags
archives
recent comment
recent trackback
others
にほんブログ村 科学ブログへ にほんブログ村 科学ブログ 恐竜へ カウンター
admin
  • 管理者ページ
  • 記事を書く
  • ログアウト

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277